
Journal of Computational Physics 229 (2010) 5022–5042
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
An improved immersed boundary-lattice Boltzmann method
for simulating three-dimensional incompressible flows

J. Wu, C. Shu *

Department of Mechanical Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
a r t i c l e i n f o

Article history:
Received 1 July 2009
Received in revised form 18 January 2010
Accepted 16 March 2010
Available online 21 March 2010

Keywords:
Immersed boundary method
Lattice Boltzmann method
Incompressible viscous flows
Three-dimensional
Boundary condition-enforced
Non-uniform mesh
0021-9991/$ - see front matter � 2010 Elsevier Inc
doi:10.1016/j.jcp.2010.03.024

* Corresponding author. Tel.: +65 6516 6476; fax
E-mail address: mpeshuc@nus.edu.sg (C. Shu).
a b s t r a c t

The recently proposed boundary condition-enforced immersed boundary-lattice Boltz-
mann method (IB-LBM) [14] is improved in this work to simulate three-dimensional
incompressible viscous flows. In the conventional IB-LBM, the restoring force is pre-cal-
culated, and the non-slip boundary condition is not enforced as compared to body-fitted
solvers. As a result, there is a flow penetration to the solid boundary. This drawback was
removed by the new version of IB-LBM [14], in which the restoring force is considered as
unknown and is determined in such a way that the non-slip boundary condition is
enforced. Since Eulerian points are also defined inside the solid boundary, the computa-
tional domain is usually regular and the Cartesian mesh is used. On the other hand, to
well capture the boundary layer and in the meantime, to save the computational effort,
we often use non-uniform mesh in IB-LBM applications. In our previous two-dimensional
simulations [14], the Taylor series expansion and least squares-based lattice Boltzmann
method (TLLBM) was used on the non-uniform Cartesian mesh to get the flow field.
The final expression of TLLBM is an algebraic formulation with some weighting coeffi-
cients. These coefficients could be computed in advance and stored for the following
computations. However, this way may become impractical for 3D cases as the memory
requirement often exceeds the machine capacity. The other way is to calculate the coef-
ficients at every time step. As a result, extra time is consumed significantly. To overcome
this drawback, in this study, we propose a more efficient approach to solve lattice Boltz-
mann equation on the non-uniform Cartesian mesh. As compared to TLLBM, the proposed
approach needs much less computational time and virtual storage. Its good accuracy and
efficiency are well demonstrated by its application to simulate the 3D lid-driven cubic
cavity flow. To valid the combination of proposed approach with the new version of
IBM [14] for 3D flows with curved boundaries, the flows over a sphere and torus are sim-
ulated. The obtained numerical results compare very well with available data in the
literature.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Numerical simulation of flows over complex geometries plays an important role in the computational fluid dynam-
ics. Among various numerical solvers, the Cartesian mesh solvers are receiving more and more attention in recent
years [1–7] due to their simplicity to simulate flows over complex geometries and moving boundaries. According to
. All rights reserved.

: +65 6779 1459.

http://dx.doi.org/10.1016/j.jcp.2010.03.024
mailto:mpeshuc@nus.edu.sg
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


J. Wu, C. Shu / Journal of Computational Physics 229 (2010) 5022–5042 5023
the treatment of boundary conditions, these solvers can be commonly classified into sharp interface type and diffuse
interface type. For a sharp interface method, the boundary is tracked and its thickness is negligible. Cartesian cut-cell
method [1,2] and hybrid Cartesian/immersed boundary [3–5] method belong to this type. For a diffuse interface ap-
proach, the boundary has a non-zero thickness and it is smeared across some nearby mesh spacing with the use of
discrete delta function interpolation. The immersed boundary method (IBM) is the well-known example in this
category.

In 1970s, Peskin [6] firstly introduced the immersed boundary method to investigate the blood flow in the human
heart. In this method, two independent meshes are employed: the fixed Cartesian mesh which is used to represent
the flow field, and the Lagrangian mesh which is used to represent the boundary. Through the discrete delta function
interpolation, variables on these two meshes can be related to each other. The key of IBM is that the effect of bound-
ary is described by the restoring force acting on the Eulerian mesh in the vicinity of boundary. Then, Navier–Stokes
(N–S) equations with the restoring force are solved over the whole fluid-boundary domain. As compared to body-fit-
ted mesh solvers, IBM decouples the solution of governing equations and implementation of boundary conditions. Due
to this feature, IBM has a great potential for simulation of flows with complex geometries and moving boundaries
[7].

In traditional IBM applications, the flow field is represented by the solution of incompressible N–S equations. More re-
cently, as an alternative computational approach to the N–S solver, the lattice Boltzmann method (LBM) [8,9] has achieved
a great success in a wide range of engineering applications. LBM consists of attractive features: simplicity, easy implemen-
tation, algebraic operation and intrinsic parallel nature. Just like the IBM, the standard LBM is usually applied on the Carte-
sian mesh. Due to this common feature, the combination of IBM and LBM may produce an efficient solver. Some attempt has
been made in this aspect. The first effort was made by Feng and Michaelides [10,11] to study the fluid–particle problems.
Later, Niu et al. [12] introduced the momentum exchange technique into the IB-LBM, and Peng et al. [13] incorporated
the multi-block approach into the IB-LBM.

One common feature of conventional IB-LBM [10–13] is that the boundary effect to the surrounding flow field is through
the restoring force, and there is no enforcement of non-slip boundary conditions in the solution process. As a result, some
streamlines may penetrate the solid body. To overcome this drawback, Wu and Shu [14] proposed a new version of IB-LBM,
in which the restoring force is considered as unknown and is calculated in such a way that the non-slip boundary condition is
enforced. As a consequence, the penetration of streamlines to the solid body is avoided, and more accurate numerical results
are obtained.

In the work of [14], the solution of flow field is obtained by the lattice Boltzmann method (LBM). It is known that the
standard LBM is only applicable on the uniform Cartesian mesh. However, the use of uniform mesh in the IB-LBM appli-
cations may not be efficient. This is because around the solid boundary, there is a thin boundary layer. To well capture this
boundary layer, the mesh spacing must be very small. So, when the uniform mesh is used, the number of mesh points will
be very large in the whole domain, leading to huge computational effort needed. To obtain high resolution near the
boundary and in the meantime save the computational time, we need to use non-uniform Cartesian mesh for the LBM
solver. Currently, there are a number of approaches [15–20] available in the literature for the application of LBM on
the non-uniform mesh. Among them, the Taylor series expansion and least squares-based lattice Boltzmann method
(TLLBM) [19,20] is a robust approach, which on one hand, keeps advantage of simple algebraic operation of the standard
LBM, and on the other hand, can be well applied to simulate flows with complex geometry and different lattice velocity
models. So, this approach is adopted in [14] to combine with the new version of IBM for simulation of various two-dimen-
sional viscous flows.

It is noted that the final form of TLLBM is an algebraic formulation with weighting coefficients. These coefficients are
only related to the coordinates of mesh points and lattice velocities. They can be calculated in advance and stored for the
following computations. In this way, additional storage is required. The increase of memory requirement for the 2D case
is not critical. However, for the 3D case, this way becomes impractical as the memory requirement often exceeds the
capacity of the computer. To remove this drawback, we can calculate the coefficients at every time step, but this will
considerably increase the computational effort, especially for the 3D case. To efficiently apply IB-LBM to simulate 3D
flows, we need to develop a more efficient LBM solver on the non-uniform Cartesian mesh. This motivates the present
work.

As can see from this paper, with the feature of non-uniform Cartesian mesh, the distribution function at a position dif-
ferent from the mesh points can be easily calculated by a simple weighted sum constructed by local interpolation along
straight mesh lines. Like TLLBM, this approach cannot only be applied on the non-uniform Cartesian mesh but also keeps
the advantage of simple algebraic operation of the standard LBM. On the other hand, as compared to TLLBM, much less
coefficients are required to be computed and these coefficients can be easily calculated from analytical formulations with-
out involving solution of an equation system. As a consequence, the computational time is greatly reduced. This is con-
firmed by its application to simulate the three-dimensional lid-driven cavity flow. Numerical results show that the
computational efficiency is greatly enhanced as compared with TLLBM. Then the developed LBM solver is incorporated
into the new version of IB-LBM [14] for simulation of three-dimensional incompressible viscous flows. Numerical results
for flows over a sphere and torus demonstrate that the present solver can effectively simulate three-dimensional flows
with curved boundaries.



5024 J. Wu, C. Shu / Journal of Computational Physics 229 (2010) 5022–5042
2. Boundary condition-enforced immersed boundary-lattice Boltzmann method (IB-LBM)

In general, the governing equations for viscous incompressible flows involving immersed boundaries can be written as
q
@u
@t
þ u � ru

� �
þrp ¼ lDuþ f ð1Þ

r � u ¼ 0 ð2Þ

fðx; tÞ ¼
Z

C
Fðs; tÞdðx� Xðs; tÞÞds ð3Þ

@Xðs; tÞ
@t

¼ uðXðs; tÞ; tÞ ¼
Z

X
uðx; tÞdðx� Xðs; tÞÞdx ð4Þ
where u is the fluid velocity, q is the density, p is the pressure, and l is the dynamic viscosity. x and X are Eulerian and
Lagrangian coordinates, f and F are force density acting on the fluid and boundary, respectively. dðx� Xðs; tÞÞ is a Dirac delta
function. Eqs. (1) and (2) are the traditional N–S equations for viscous and incompressible fluid with a force density f. Eqs. (3)
and (4) give the relationship between the immersed boundary and the fluid, by distributing the boundary force to nearby
fluid points and computing the boundary velocity from the fluid velocity.

Based on Chapman–Enskog multi-scale analysis, the lattice Boltzmann equation with forcing term can recover Eqs. (1)
and (2). As shown in [14], the corresponding lattice Boltzmann equation can be written as
faðxþ eadt; t þ dtÞ � faðx; tÞ ¼ �
1
s

faðx; tÞ � f eq
a ðx; tÞ

� �
þ Fadt ð5Þ

Fa ¼ 1� 1
2s

� �
wa

ea � u
c2

s
þ ea � u

c4
s

ea

� �
� f ð6Þ

qu ¼
X

a
eafa þ

1
2

fdt ð7Þ
where fa is the distribution function, f eq
a is its corresponding equilibrium state, s is the single relaxation parameter, ea is the

lattice velocity, f is the force density which is distributed from the boundary force, and wa are the coefficients in the equi-
librium distribution function, which depend on the selected lattice velocity model. In our simulation, D3Q15 [21] model as
shown in Fig. 1 is used and the velocity set is given by
ea ¼
0 a ¼ 0
ð�1; 0;0Þ; ð0;�1; 0Þ; ð0;0;�1Þ a ¼ 1—6
ð�1;�1;�1Þ a ¼ 7—14

8><
>: ð8Þ
The corresponding equilibrium distribution function [21] is
f eq
a ðx; tÞ ¼ qwa 1þ ea � u

c2
s
þ ðea � uÞ2 � ðcsjujÞ2

2c4
s

" #
ð9Þ
where w0 ¼ 2=9; wa ¼ 1=9 for a ¼ 1—6 and wa ¼ 1=72 for a ¼ 7—14. cs ¼ c=
ffiffiffi
3
p

is the sound speed of the model, c ¼ dx=dt.
e12 e11

e10
e9 

e7 e8 

e2 
e1 

e3 

e4 

e6 

e5 

e13

e0 

e14

Fig. 1. D3Q15 model.



J. Wu, C. Shu / Journal of Computational Physics 229 (2010) 5022–5042 5025
Eq. (7) indicates that the fluid velocity includes two parts. One is contributed from the density distribution function, and
the other is contributed from the force density. By defining the intermediate velocity u� ¼

P
aeafa

�
q and velocity correction

du ¼ fdt=2q, Eq. (7) can be rewritten as
u ¼ u� þ du ð10Þ
As pointed out in [14], the velocity correction at fluid (Eulerian) point is distributed from the velocity correction at boundary
(Lagrangian) points. In the IBM, a set of Lagrangian points XBðsl; tÞ ðl ¼ 1;2; . . . ;mÞ is used to represent the boundary. Here,
we can set an unknown velocity correction vector dul

B at every Lagrangian point. The velocity correction du at the Eulerian
point can be obtained by the following Dirac delta function interpolation
duðx; tÞ ¼
Z

C
duBðXB; tÞdðx� XBðs; tÞÞds ð11Þ
In the actual implementation, dðx� XBðs; tÞÞ is smoothly approximated by a continuous kernel distribution Dijk [22]
dðrÞ ¼
1

4h 1þ cos pjrj
2h

� 	� 	
; jrj 6 2h

0; jrj > 2h

(
ð12Þ

Dijk xijk � Xl
B

� 	
¼ d xijk � Xl

B

� 	
d yijk � Yl

B

� 	
d zijk � Zl

B

� 	
ð13Þ
where h is the mesh spacing of Eulerian mesh. Using Eqs. (13), Eq. (11) can be approximated by
duðxijk; tÞ ¼
X

l

dul
B Xl

B; t
� 	

Dijk xijk � Xl
B

� 	
Dsl ðl ¼ 1;2; . . . ;mÞ ð14Þ
where Dsl is the area of the boundary element. In the present simulation, the triangular element is used to discretize the 3D
boundary surface.

After obtaining the velocity correction at the Eulerian point, the fluid velocity can be corrected through
uðxijk; tÞ ¼ u�ðxijk; tÞ þ duðxijk; tÞ ð15Þ
where u�ðxijk; tÞ is the intermediate velocity. To satisfy the non-slip boundary condition, the fluid velocity on the boundary
point must be equal to the boundary velocity at the same position. The fluid velocity on the boundary point can be obtained
by interpolation using the smooth Dirac delta function, and it can be expressed as
Ul
B Xl

B; t
� 	

¼
X
i;j;k

uðxijk; tÞDijk xijk � Xl
B

� 	
DxDyDz ð16Þ
When we substitute Eq. (15) into Eq. (16), the following expression can be obtained
Ul
B Xl

B; t
� 	

¼
X
i;j;k

u�ðxijk; tÞDijk xijk � Xl
B

� 	
DxDyDzþ

X
i;j;k

X
l

dul
B Xl

B; t
� 	

Dijk xijk � Xl
B

� 	
DslDijk xijk � Xl

B

� 	
DxDyDz ð17Þ
If we further set dB
i0 j0 ¼ Dijk xijk � Xl

B

� 	
Dsl and dj0 i0 ¼ Dijk xijk � Xl

B

� 	
DxDyDz, Eq. (17) can be written in the following matrix form
AX ¼ B ð18Þ
where
X ¼ du1
B; du2

B; . . . ; dum
B


 �T

A ¼

d11 d12 � � � d1n

d21 d22 � � � d2n

..

. ..
. . .

. ..
.

dm1 dm2 � � � dmn

0
BBBBBB@

1
CCCCCCA

dB
11 dB

12 � � � dB
1m

dB
21 dB

22 � � � dB
2m

..

. ..
. . .

. ..
.

dB
n1 dB

n2 � � � dB
nm

0
BBBBBBB@

1
CCCCCCCA

B ¼

U1
B

U2
B

..

.

Um
B

0
BBBBBBB@

1
CCCCCCCA
�

d11 d12 � � � d1n

d21 d22 � � � d2n

..

. ..
. . .

. ..
.

dm1 dm2 � � � dmn

0
BBBBBB@

1
CCCCCCA

u�1

u�2

..

.

u�n

0
BBBBBB@

1
CCCCCCA
where m is the number of Lagrangian points, and n is the number of adjacent Eulerian points around the boundary. It can be
found that the elements of matrix A are only related to the coordinates of Lagrangian points and their neighboring Eulerian
points. By solving the equation system (18), we can get all the velocity corrections on the Lagrangian points. After that, we



5026 J. Wu, C. Shu / Journal of Computational Physics 229 (2010) 5022–5042
calculate the final corrected fluid velocities by Eqs. (14) and (15). Since the fluid velocity correction is du ¼ fdt=2q, we can
simply calculate the force density by
fðxijkÞ ¼ 2qduðxijkÞ=dt ð19Þ
In our simulation, the macroscopic variables such as density, intermediate velocity and pressure are calculated by
q ¼
X

a
fa; qu� ¼

X
a

eafa; P ¼ c2
s q ð20Þ
3. An efficient LBM solver on non-uniform Cartesian mesh

As indicated in Section 1, a major contribution of this work is to develop an efficient LBM solver on the non-uniform
Cartesian mesh to replace Taylor series expansion- and least square-based LBM (TLLBM) in improving IB-LBM [14] for sim-
ulation of three-dimensional flows. To well show the advantages of proposed approach over TLLBM in terms of memory
requirement, simplicity and efficiency, we will give a brief description on the TLLBM first before the efficient LBM solver
is presented.

3.1. Brief description of TLLBM

As shown in [19,20], TLLBM was developed from the standard LBM, Taylor series expansion and least square optimization.
We will take the two-dimensional case as an example to illustrate TLLBM. As shown in Fig. 2, by using the standard LBM, 9
particles initially at mesh points P0; P1; . . . ; P8 represented by the symbol ‘‘h” will stream to the new positions represented by
the symbol ‘‘�”. For the general case (non-uniform mesh), these new positions may not coincide with the mesh points. To get
the distribution function at the mesh point and at the new time level t þ dt, we can apply Taylor series expansion at the new
positions and introduce the least square optimization to form an equation system. Its solution gives the distribution function
at P0 and t þ dt as
faðP0; t þ dtÞ ¼
X8

k¼0

aa
1;kþ1ga

k ð21Þ
where
ga
k ¼ faðPk; tÞ � faðPk; tÞ � f eq

a ðPk; tÞ
� �

=sþ Fadt
aa
1;k are the elements of the first row of the matrix A given by
A ¼ ðST SÞ�1ST

S ¼

1 Dx0 Dy0 ðDx0Þ2=2 ðDy0Þ
2
=2 Dx0Dy0

1 Dx1 Dy1 ðDx1Þ2=2 ðDy1Þ
2
=2 Dx1Dy1

1 — — — — —

1 — — — — —

1 — — — — —

1 Dx8 Dy8 ðDx8Þ2=2 ðDy8Þ
2
=2 Dx8Dy8

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

9�6

Dxi ¼ xi þ eaxdt � x0; Dyi ¼ yi þ eaydt � y0 ði ¼ 0;1; . . . ;8Þ:
α

6P

4P 2P3P

8P7P

5P 1P0P

Fig. 2. Schematic diagram of TLLBM (particles are streamed from mesh points).



J. Wu, C. Shu / Journal of Computational Physics 229 (2010) 5022–5042 5027
As can see clearly from Eq. (21), for each lattice direction of the 2D case, we need to compute 9 coefficients which involve
matrix multiplication and inversion. The computation will take considerable time as matrix operation is done along each
lattice direction. The 3D case is even worse as we have more coefficients and more lattice directions. To save the computa-
tional time, we can compute these coefficients once and store them. But this will considerably increase the memory require-
ment. For example, for the D2Q9 lattice velocity model of the 2D case, we need to store 72 coefficients (8 directions for
moving particles � 9 points) at every mesh point, while for the D3Q15 model of the 3D case, we have to store 210 coefficients
(14 directions for moving particles � 15 points) at every mesh point. It seems that either computing the coefficients at every
time step or storing them in the memory is not an efficient way in application of TLLBM to the 3D case. This difficulty can be
overcome by the following approach.

3.2. Efficient LBM solver on non-uniform Cartesian mesh

Lattice Boltzmann equation (5) can be rewritten as
faðx; tÞ ¼ gaðx� eadt; t � dtÞ ð22Þ

gaðx� eadt; t � dtÞ ¼ faðx� eadt; t � dtÞ þ 1
s f eq

a ðx� eadt; t � dtÞ � faðx� eadt; t � dtÞ
� �

þ Fadt ð23Þ
Here ga is the post-collision state of distribution function. For the non-uniform mesh, x� eadt may not be the mesh point.
Hence, the value of ga at the position x� eadt has to be obtained first before the streaming process starts. For the general
case, this may not be an easy job. However, as mentioned above, IB-LBM is usually applied on the non-uniform Cartesian
mesh. For this case, we can easily evaluate ga at x� eadt by using the second order local interpolation. Take the two-dimen-
sional case and D2Q9 model as an example. As shown in Fig. 3, 8 moving particles at ‘‘h” positions, which may not be the
mesh points, will stream to the mesh point ‘‘�”. Since the non-uniform Cartesian mesh (mesh lines are straight lines) is used,
evaluation of ga ða ¼ 1—8Þ at ‘‘h” positions is simple and straightforward. Note that for all the cases, ga is evaluated at the
time level t. In the following, for simplicity of derivation, t is taken out from ga. We firstly consider the evaluation of g1. As
seen in Fig. 3, g1 is on the horizontal mesh line of y ¼ yj. Using distribution function values at three mesh points
ðxi�1; yjÞ; ðxi;yjÞ, and ðxiþ1;yjÞ; g1 can be obtained by the second order interpolation as
g1ðx; yjÞ ¼ a1g1ðxi�1; yjÞ þ a2g1ðxi; yjÞ þ a3g1ðxiþ1; yjÞ ð24Þ
Here a1; a2; a3 are Lagrange interpolation coefficients, which can be expressed as
a1 ¼
ðx� xiÞðx� xiþ1Þ

ðxi�1 � xiÞðxi�1 � xiþ1Þ

a2 ¼
ðx� xi�1Þðx� xiþ1Þ
ðxi � xi�1Þðxi � xiþ1Þ

a3 ¼
ðx� xi�1Þðx� xiÞ

ðxiþ1 � xi�1Þðxiþ1 � xiÞ

ð25Þ
If we define
Dx1 ¼ xi�1 � xi; Dx2 ¼ xiþ1 � xi ð26Þ
8g 7g 6g

5g

4g3g2g

1g

j+1

i+1

j-1 

i-1 

Fig. 3. Sketch of local interpolation scheme (particles are streamed from ‘‘h” points).



5028 J. Wu, C. Shu / Journal of Computational Physics 229 (2010) 5022–5042
and use x ¼ xi � e1xdt, Eq. (25) can be rewritten as
a1 ¼
e1xdtðe1xdt þ Dx2Þ
Dx1ðDx1 � Dx2Þ

a2 ¼
ðe1xdt þ Dx1Þðe1xdt þ Dx2Þ

Dx1Dx2

a3 ¼
e1xdtðe1xdt þ Dx1Þ
Dx2ðDx2 � Dx1Þ

ð27Þ
Here e1x is the x-component of lattice velocity along the direction 1, which is 1 in the D2Q9 model. Similarly, g3 on the ver-
tical mesh line of x ¼ xi can be evaluated by
g3ðxi; yÞ ¼ b1g3ðxi; yj�1Þ þ b2g3ðxi; yjÞ þ b3g3ðxi; yjþ1Þ ð28Þ
where b1; b2; b3 are
b1 ¼
e3ydtðe3ydt þ Dy2Þ
Dy1ðDy1 � Dy2Þ

b2 ¼
ðe3ydt þ Dy1Þðe3ydt þ Dy2Þ

Dy1Dy2

b3 ¼
e3ydtðe3ydt þ Dy1Þ
Dy2ðDy2 � Dy1Þ

ð29Þ
with
Dy1 ¼ yj�1 � yj; Dy2 ¼ yjþ1 � yj ð30Þ
and e3y is the y-component of lattice velocity along the direction 3, which is 1 in the D2Q9 model. Eq. (24) is actually the
one-dimensional interpolation along the horizontal mesh line of y ¼ yj, while Eq. (28) is the one-dimensional interpolation
along the vertical mesh line of x ¼ xi. They can also be applied to evaluate g5 and g7 when e1x is replaced by e5x and e3y is
replaced by e7y (both e5x and e7y take the value of �1 in the D2Q9 model). For other positions which are neither on the
horizontal mesh line nor on the vertical mesh line, we can combine Eqs. (24) and (28) to evaluate the distribution func-
tion. Suppose that we need to evaluate gaðx; yÞ for a general case. At first, we can apply Eq. (24) to get the intermediate
distribution functions gaðx; yj�1Þ; gaðx; yjÞ, and gaðx; yjþ1Þ at three locations ðx; yj�1Þ; ðx; yjÞ, and ðx; yjþ1Þ. The expressions can
be written as
gaðx; yj�1Þ ¼ a1agaðxi�1; yj�1Þ þ a2agaðxi; yj�1Þ þ a3agaðxiþ1; yj�1Þ
gaðx; yjÞ ¼ a1agaðxi�1; yjÞ þ a2agaðxi; yjÞ þ a3agaðxiþ1; yjÞ
gaðx; yjþ1Þ ¼ a1agaðxi�1; yjþ1Þ þ a2agaðxi; yjþ1Þ þ a3agaðxiþ1; yjþ1Þ

ð31Þ
with
a1a ¼
eaxdtðeaxdt þ Dx2Þ
Dx1ðDx1 � Dx2Þ

a2a ¼
ðeaxdt þ Dx1Þðeaxdt þ Dx2Þ

Dx1Dx2

a3a ¼
eaxdtðeaxdt þ Dx1Þ
Dx2ðDx2 � Dx1Þ

ð32Þ
Then by using these intermediate values and Eq. (28), gaðx; yÞ can be easily calculated by
gaðx; yÞ ¼ b1agaðx; yj�1Þ þ b2agaðx; yjÞ þ b3agaðx; yjþ1Þ ð33Þ
Here,
b1a ¼
eaydtðeaydt þ Dy2Þ
Dy1ðDy1 � Dy2Þ

b2a ¼
ðeaydt þ Dy1Þðeaydt þ Dy2Þ

Dy1Dy2

b3a ¼
eaydtðeaydt þ Dy1Þ
Dy2ðDy2 � Dy1Þ

ð34Þ
By setting x ¼ xi � eaxdt; y ¼ yj � eaydt, Eq. (33) can be put in the following matrix form,
gaðxi � eaxdt; yj � eaydtÞ ¼ BGA ð35Þ



J. Wu, C. Shu / Journal of Computational Physics 229 (2010) 5022–5042 5029
where matrices A, B and G are
A ¼ fa1a; a2a; a3agT
; B ¼ fb1a; b2a; b3ag ð36Þ

G ¼
gaðxi�1; yj�1Þ gaðxi; yj�1Þ gaðxiþ1; yj�1Þ
gaðxi�1; yjÞ gaðxi; yjÞ gaðxiþ1; yjÞ

gaðxi�1; yjþ1Þ gaðxi; yjþ1Þ gaðxiþ1; yjþ1Þ

0
B@

1
CA ð37Þ
As can be seen from Eqs. (32) and (34), for the given non-uniform mesh, the coefficients depend on the lattice velocity. In
particular, when eax ¼ 0; eay ¼ 0, then a1a ¼ a3a ¼ 0; a2a ¼ 1; b1a ¼ b3a ¼ 0; b2a ¼ 1. In fact, for this case, the particle is sta-
tic and there is no streaming process. Apart from the static particle, in the D2Q9 lattice model, both eax and eay take either 1
or �1. This means that we only have two sets of coefficient matrices A and B. So, overall, we have 12 coefficients (6 in the x-
direction and 6 in the y-direction) to store. Obviously, as compared to the TLLBM where 72 coefficients are needed to store,
the memory requirement of present approach is greatly reduced. In addition, the calculation of coefficients in the present
work also takes much less time as compared with TLLBM. In this work, they are simply calculated by algebraic formulations
(32) and (34), while in TLLBM, they are obtained by solving an algebraic equation system (involving matrix inversion). On the
other hand, like TLLBM, the application of present approach keeps the advantage of the standard LBM, that is, simple alge-
braic operation to update distribution functions.

The above procedure to evaluate gaðxi � eaxdt; yj � eaydtÞ for the 2D case can be directly extended to the 3D case. For the
3D case, we can apply Eq. (35) to calculate the intermediate distribution functions gaðxi � eaxdt; yj � eaydt; zk�1Þ; ga
ðxi � eaxdt; yj � eaydt; zkÞ, and gaðxi � eaxdt; yj � eaydt; zkþ1Þ at three planes of z ¼ zk�1; z ¼ zk, and z ¼ zkþ1 first. The correspond-
ing formulations are
gaðxi � eaxdt; yj � eaydt; zk�1Þ ¼ BG1A

gaðxi � eaxdt; yj � eaydt; zkÞ ¼ BG2A

gaðxi � eaxdt; yj � eaydt; zkþ1Þ ¼ BG3A

ð38Þ
where matrices A and B are defined in Eq. (36). The matrices G1; G2 and G3 are
G1 ¼
gaðxi�1; yj�1; zk�1Þ gaðxi; yj�1; zk�1Þ gaðxiþ1; yj�1; zk�1Þ
gaðxi�1; yj; zk�1Þ gaðxi; yj; zk�1Þ gaðxiþ1; yj; zk�1Þ

gaðxi�1; yjþ1; zk�1Þ gaðxi; yjþ1; zk�1Þ gaðxiþ1; yjþ1; zk�1Þ

0
B@

1
CA

G2 ¼
gaðxi�1; yj�1; zkÞ gaðxi; yj�1; zkÞ gaðxiþ1; yj�1; zkÞ
gaðxi�1; yj; zkÞ gaðxi; yj; zkÞ gaðxiþ1; yj; zkÞ

gaðxi�1; yjþ1; zkÞ gaðxi; yjþ1; zkÞ gaðxiþ1; yjþ1; zkÞ

0
B@

1
CA

G3 ¼
gaðxi�1; yj�1; zkþ1Þ gaðxi; yj�1; zkþ1Þ gaðxiþ1; yj�1; zkþ1Þ
gaðxi�1; yj; zkþ1Þ gaðxi; yj; zkþ1Þ gaðxiþ1; yj; zkþ1Þ

gaðxi�1; yjþ1; zkþ1Þ gaðxi; yjþ1; zkþ1Þ gaðxiþ1; yjþ1; zkþ1Þ

0
B@

1
CA

ð39Þ
Finally, gaðxi � eaxdt; yj � eaydt; zk � eazdtÞ can be calculated by the one-dimensional interpolation along the z direction as
gaðxi � eaxdt; yj � eaydt; zk � eazdtÞ ¼ c1agaðxi � eaxdt; yj � eaydt; zk�1Þ þ c2agaðxi � eaxdt; yj � eaydt; zkÞ
þ c3agaðxi � eaxdt; yj � eaydt; zkþ1Þ ¼ CGt ð40Þ
where Gt ¼ fBG1A;BG2A;BG3AgT
; C ¼ fc1a; c2a; c3ag with
c1a ¼
eazdtðeazdt þ Dz2Þ
Dz1ðDz1 � Dz2Þ

c2a ¼
ðeazdt þ Dz1Þðeazdt þ Dz2Þ

Dz1Dz2

c3a ¼
eazdtðeazdt þ Dz1Þ
Dz2ðDz2 � Dz1Þ

ð41Þ
Here Dz1 and Dz2 are
Dz1 ¼ zk�1 � zk; Dz2 ¼ zkþ1 � zk ð42Þ
After gaðxi � eaxdt; yj � eaydt; zk � eazdtÞ is calculated, it is very easy to get faðxi; yj; zkÞ by using Eq. (22). Note that in the present
approach, the second order interpolation is adopted.

We can see from Eq. (40) that as compared to the 2D case, we only have additional coefficients c1a; c2a; c3a for the 3D case.
Their values can be calculated by analytical expression (41). When D3Q15 lattice model is adopted, eax; eay, and eaz also take
either 1 or�1. So, in each direction, we need to store 6 coefficients only. Overall, we need to store 18 coefficients for each mesh
point. As shown in Section 3.1, TLLBM needs to store 210 coefficients for this case. The memory saving of present approach is



5030 J. Wu, C. Shu / Journal of Computational Physics 229 (2010) 5022–5042
obvious. If the coefficients are computed every time step, the increase of computational effort is not much since they are given
by simple algebraic formulations (32), (34) and (41) without involving the solution of an algebraic equation system.

On the other hand, we have to indicate that although the present approach is more efficient than TLLBM. Its application is
not as general as TLLBM. TLLBM can be applied to any point distribution. In contrast, the present approach is only applicable
on the structured non-uniform Cartesian mesh. Fortunately, IB-LBM is applied on such mesh. In this sense, we can say that
the present approach is specifically developed for IB-LBM to improve its computational efficiency.

When the present approach is incorporated into IB-LBM, its basic solution procedure for simulating a three-dimensional
flow can be summarized as follows,

(1) Set initial conditions, compute the elements of matrix A in Eq. (18) and get A�1.
(2) Use Eq. (5) to obtain the density distribution function at time level t ¼ tn (initially setting Fa ¼ 0). The post-collision

state of distribution function in Eq. (5) is computed using our proposed LBM solver on the non-uniform Cartesian
mesh, i.e. Eq. (40). Compute the macroscopic variables using Eq. (20).

(3) Solve equation system (18) to get the velocity corrections at all boundary points and use Eq. (14) to get the fluid veloc-
ity corrections.

(4) Correct the fluid velocity using Eq. (15) and obtain the force density using Eq. (19).
(5) Compute the equilibrium distribution function using Eq. (9).
(6) Repeat Steps 2–5 until converged solution is reached.

3.3. Accuracy analysis of present LBM

To demonstrate the second order accuracy of proposed LBM, a mathematical analysis is shown in this section. For sim-
plicity, the one-dimensional model is selected to illustrate the analysis. According to Eq. (22), faðxi; tÞ is given by
faðxi; tÞ ¼ gaðxi � eadt; t � dtÞ ð43Þ
To apply the above equation, we notice that the position xi � eadt may not be the mesh point for the non-uniform Cartesian
mesh. Thus, we have to use the local interpolation. According to Eq. (24), faðxi; tÞ in our proposed LBM is evaluated by
faðxi; tÞ ¼ a1agaðxi�1; t � dtÞ þ a2agaðxi; t � dtÞ þ a3agaðxiþ1; t � dtÞ ð44Þ
where xi�1; xi, and xiþ1 are coordinates of the three mesh points, and
gaðxk; t � dtÞ ¼ faðxk; t � dtÞ þ 1
s

f eq
a ðxk; t � dtÞ � faðxk; t � dtÞ
� �

ðk ¼ i� 1; i; iþ 1Þ

a1a ¼
eadtðeadt þ Dx2Þ
Dx1ðDx1 � Dx2Þ

; a2a ¼
ðeadt þ Dx1Þðeadt þ Dx2Þ

Dx1Dx2
; a3a ¼

eadtðeadt þ Dx1Þ
Dx2ðDx2 � Dx1Þ

Dx1 ¼ xi�1 � xi; Dx2 ¼ xiþ1 � xi
In the following, we will show that as compared with the original formulation (43), Eq. (44) has the second order of accuracy.
Since gaðxi�1; t � dtÞ; gaðxi; t � dtÞ; gaðxiþ1; t � dtÞ and gaðxi � eadt; t � dtÞ are all evaluated at the time level t � dt, for simplic-
ity of following derivation, t � dt is taken out from ga. Using Taylor series expansion, gaðxi�1Þ; gaðxiÞ; gaðxiþ1Þ can be approx-
imated by gaðxi � eadtÞ and its derivatives as
gaðxi�1Þ ¼ gaðxi � eadtÞ þ ðDx1 þ eadtÞ @ga

@x
þ 1

2
ðDx1 þ eadtÞ2 @

2ga

@x2 þ Oðdt3Þ ð45aÞ

gaðxiÞ ¼ gaðxi � eadtÞ þ eadt
@ga

@x
þ 1

2
ðeadtÞ2 @

2ga

@x2 þ Oðdt3Þ ð45bÞ

gaðxiþ1Þ ¼ gaðxi � eadtÞ þ ðDx2 þ eadtÞ @ga

@x
þ 1

2
ðDx2 þ eadtÞ2 @

2ga

@x2 þ Oðdt3Þ ð45cÞ
Note that in the above equation, the spatial derivatives on the right hand side are evaluated at ðxi � eadtÞ. Substituting Eq.
(45) into Eq. (44) gives
faðxi; tÞ ¼ s1gaðxi � eadt; t � dtÞ þ s2
@ga

@x
þ s3

@2ga

@x2 þ Oðdt3Þ ð46Þ
where
s1 ¼ a1a þ a2a þ a3a

s2 ¼ a1aðDx1 þ eadtÞ þ a2aeadt þ a3aðDx2 þ eadtÞ

s3 ¼
1
2

a1aðDx1 þ eadtÞ2 þ 1
2

a2aðeadtÞ2 þ 1
2

a3aðDx2 þ eadtÞ2
With the expressions of a1a; a2a; a3a, it is easy to show that s1 ¼ 1; s2 ¼ 0; s3 ¼ 0. This means that Eq. (44) can be accurate to
Eq. (43) up to ðdtÞ2 term (truncation error is in the order of ðdtÞ3). Therefore, we can conclude that our proposed LBM has the
second order of accuracy as compared to the standard LBM.



J. Wu, C. Shu / Journal of Computational Physics 229 (2010) 5022–5042 5031
4. Numerical results and discussion

4.1. Flow in 3D lid-driven cavity

To validate the proposed efficient LBM solver on the non-uniform Cartesian mesh, the simulation of 3D lid-driven cubic
cavity flow is carried out and its efficiency is demonstrated by comparing the CPU time consumed in this method with
that in TLLBM. The Reynolds number is defined as Re ¼ U1L=t, which is based on the lid velocity and length of cavity.
Here, the cases of Re = 100, 400 and 1000 are considered. Three non-uniform meshes of 61 � 61 � 61, 81 � 81 � 81,
and 121 � 121 � 121 with fine mesh near the cavity boundaries and coarse mesh near the center are used. The mesh point
is generated by
xi ¼ 0:5ð1� g tan�1ðð1� jiÞ � tanð1=gÞÞÞ ði ¼ 1;2;3Þ ð47Þ
u

z

-0.5 -0.25 0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

present
Babu
Shuetal.

Re = 400

x

w

0 0.2 0.4 0.6 0.8 1
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

present
Babu
Shuetal.

Re = 400

u

z

-0.5 -0.25 0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

present
Babu
Shuetal.

Re = 1000

x

w

0 0.2 0.4 0.6 0.8 1
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

present
Babu
Shuetal.

Re = 1000

u along vertical central line w along horizontal central line 

u

z

-0.5 -0.25 0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

present
Babu
Shuetal.

Re = 100

x

w

0 0.2 0.4 0.6 0.8 1
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

present
Babu
Shuetal.

Re = 100

Fig. 4. Comparison of velocity profiles on the plane of y ¼ 0:5.



5032 J. Wu, C. Shu / Journal of Computational Physics 229 (2010) 5022–5042
where x1; x2, and x3 are mesh coordinates along the x-, y-, and z-direction, respectively; ji ¼ ðIi � 1Þ=ððImi � 1Þ2Þ; Ii and Imi

are the mesh point index and mesh size along a spatial direction, respectively; g is the parameter to control the mesh
stretching, which is selected as 0.85 in this study.

In current simulation, the fluid density is taken as q ¼ 1:0 and the lid velocity is U1 ¼ 0:1. Initially, the density inside the
cavity is constant and velocity is zero. The lid on the top moves along the x-direction. The equilibrium distribution functions
are used to implement moving boundary condition and bounce-back schemes are applied on the stationary walls. The con-
vergence criterion for simulations is set as
X
unþ1

i;j;k

��� ���� un
i;j;k

��� ���� 	
6 10�8
Fig. 4 plots the velocity profiles of x-direction component u along the vertical centerline and z-direction component w
along the horizontal centerline on the plane of y = 0.5 for three Reynolds numbers. For comparison, the results of Babu
and Korpela [23] obtained by solving incompressible N–S equations and those of Shu et al. [24] using TLLBM are also
Fig. 5. Streamtraces and vorticity contours on three mid-planes for Re = 400.



J. Wu, C. Shu / Journal of Computational Physics 229 (2010) 5022–5042 5033
included. It is clear that the present results compare very well with previous numerical results. Fig. 5 shows the streamtraces
and vorticity contours on three orthogonal mid-planes for Re = 400. These plots also agree well with those in the previous
study.

In TLLBM, the required coefficients can be computed in advance. For D3Q15, we need to store at least 14 coefficients for
every mesh point and every lattice velocity direction [24]. When the mesh size is increased, it becomes unacceptable to store
so many coefficients due to the limitation of virtual memory. Another choice is to calculate coefficients during every time
step. Hence, a great deal of extra time is consumed due to tedious matrix operation. In our proposed LBM solver, the coef-
ficients are simply calculated by analytical formulations (32), (34) and (41). As compared to TLLBM, very less extra time is
needed. Take the non-uniform mesh of 61 � 61 � 61 as an example. The CPU time consumed by the present approach and
timestep

C
PU

tim
e(

s)

0 1000 2000 3000 4000 5000

50
00
0

10
00
00

15
00
00

20
00
00

LILBM

TLLBM

Fig. 6. Comparison of CPU time.

Fig. 7. Streamlines at the x–y plane for steady axisymmetric flows.



5034 J. Wu, C. Shu / Journal of Computational Physics 229 (2010) 5022–5042
TLLBM is compared, and the results are displayed in Fig. 6, which shows the CPU time against computational time step. It can
be found that the relationship between CPU time and time step is linear. The slope for TLLBM and present approach is 42.7
and 3.45, respectively. This implicitly means that the present solver only takes about 3.45/42.7 = 8% of computational time of
TLLBM. The high efficiency of the proposed LBM solver is obvious.

4.2. Flow over a stationary sphere

To simulate 3D flow with immersed boundaries, we combine the proposed LBM solver with boundary condition-enforced
IB-LBM [14]. The example of flow over a sphere is selected to validate the improved IB-LBM. The behavior of this three-
dimensional flow with varying Reynolds numbers has been extensively studied. Here the low Reynolds number
ðRe 6 300Þ laminar flows are simulated. The Reynolds number is defined as
Table 1
Compar

Case

Re =
Re =
Re ¼ U1D
t

ð48Þ
Re

L
s

0 50 100 150 200
0

0.5

1

1.5

2

present
Johnson et al.
Gilmanov et al.

Fig. 8. Comparison of recirculation length Ls .

ison of drag coefficients at Re = 100 and 200.

Drag coefficient Cd

Johnson and Patel [25] Gilmanov et al. [26] White [27] Present

100 1.112 1.153 1.18 1.128
200 0.79 – 0.81 0.8

Fig. 9. Streamlines at Re = 250 for steady non-axisymmetric flow.



J. Wu, C. Shu / Journal of Computational Physics 229 (2010) 5022–5042 5035
Here U1 is the free stream velocity and D is the sphere diameter. Traditionally, the sphere laminar flow could be classified
into three different regimes: steady axisymmetric flow ðRe 6 200Þ, steady non-axisymmetric flow ð210 6 Re 6 270Þ and un-
steady non-axisymmetric flow ð280 6 Re < 375Þ.

In present simulation, the computational domain is a rectangular box and its size is 25D � 20D � 20D in the x-, y- and z-
direction, respectively. The sphere is located at (10D,10D,10D). A non-uniform mesh, which is fine and uniform around the
sphere, is taken.
Fig. 10. Streamlines at Re = 300 for unsteady non-axisymmetric flow.



5036 J. Wu, C. Shu / Journal of Computational Physics 229 (2010) 5022–5042
In current simulation, the fluid density is taken as q ¼ 1:0 and the free stream velocity is U1 ¼ 0:1. Initially, the free
stream velocity is given in the whole computational domain. The equilibrium distribution functions are used to implement
the outer boundary conditions.

To simulate the steady axisymmetric flow at Re = 50, 100, 150, and 200, the mesh size is chosen as 121 � 101 � 101. The
uniform mesh spacing around the sphere is taken as 0.025. The surface of sphere is discretized using triangular elements
with 808 vertices.

Since the flow is axisymmetric, only the streamlines at the x–y plane of symmetry are plotted in Fig. 7. Since the bound-
ary-layer separation happens for these Reynolds numbers, a recirculation region is appeared behind the sphere. This can be
seen clearly in Fig. 7. It was found that the length of recirculation region ðLsÞ continuously increases with Reynolds number.
Fig. 8 shows the variation of Ls with Re. For comparison, the results of Johnson and Patel [25] and Gilmanov et al. [26] are also
included. Good agreement can be found in this figure. Table 1 compares the drag coefficients at Re = 100 and 200 with pre-
vious numerical [25,26] and experimental [27] data. Here, the drag coefficient Cd is defined as
Cd ¼
FD

ð1=2ÞqU2
1S
¼ 8FD

qU2
1pD2 ð49Þ

FD ¼
Z

C
f B
x dC ð50Þ
Fig. 12. Dimensions of the torus.

Fig. 11. 3D vortical structures of sphere for planar symmetric flows.



J. Wu, C. Shu / Journal of Computational Physics 229 (2010) 5022–5042 5037
where f B
x is the x-component of boundary force on the sphere. From the table we can see that the present numerical results

compare very well with previous data. This validation shows that the improved IB-LBM can efficiently simulate three-dimen-
sional flows with curved boundaries.

For steady and unsteady non-axisymmetric flow, the simulations at Re = 250 and 300 are carried out. The mesh size of
141 � 121 � 121 is used. The uniform mesh spacing and the number of points on the sphere surface are the same as those
for the axisymmetric flow simulations.

When the Reynolds number goes to 250, the flow over a sphere has undergone the regular asymmetric transition and
becomes non-axisymmetric. This phenomenon is clearly displayed in Fig. 9, which shows the streamlines in the x–y and
x–z planes of symmetry. It is apparent from figure that the symmetry is lost in the x–z plane, which implies that the flow
is no longer axisymmetric. At the same time, the flow in the x–y plane is still symmetric. Hence, the flow at this situation
can be considered as planar symmetric. These results are in good agreement with previous solutions [25,26]. When the Rey-
nolds number is even higher and comes to 300, the flow undergoes a further transition, Hopf bifurcation, to unsteady state
and the hairpin-shedding downstream from the sphere appears. Inferred from Fig. 10 which illustrates the streamlines in the
x–y and x–z planes, the flow in the x–y plane maintains symmetric while the flow in the x–z plane becomes periodic. There-
fore, this flow phenomenon can be recognized as unsteady planar symmetric. The Strouhal number in present simulation is
0.132 which is close to the values of 0.137 and 0.135 in [25] and [26], respectively. Using k2-method of Jeong and Hussain
[28], 3D vortical structures behind the sphere are plotted in Fig. 11 for planar symmetric flows. In the case of Re = 250, a pair
of vorticity tails stretches behind the sphere. This is the classic two-threaded wake which occurs after regular non-axisym-
metric transition. In the case of Re = 300, the vorticity tails become unsteady, which is attributed to the non-axisymmetric
Hopf transition. A hairpin vortex is formed in the wake. It can be observed from Fig. 11 that the vortical structures are sym-
metric to the x–z plane at this Reynolds number, although the axisymmetry is lost. However, if the Reynolds number con-
tinues to be increased and when Re P 375, the flow symmetry to the x–z plane would also be broken down. The flow in the
wake becomes unsteady asymmetric. This case was not simulated in present study.
Fig. 13. Streamlines for flow over a torus with Ar ¼ 0:5.



5038 J. Wu, C. Shu / Journal of Computational Physics 229 (2010) 5022–5042
4.3. Flow over a small aspect ratio torus

To further validate the improved IB-LBM for 3D flows with complex geometry, the flow over a torus is simulated. Varying
the aspect ratio (Ar) will give significantly different behaviors of the vortical structure behind the torus. Here, the aspect ratio
is defined as Ar ¼ D=d, where D is the mean torus diameter and d is the cross-section diameter, as shown in Fig. 12. If Ar ¼ 0,
the torus becomes a sphere, and when Ar !1, the torus can be considered as a circular cylinder (just local to the cross-sec-
tion of torus). For small Ar, the wake behind the torus is similar to that of sphere, while for sufficiently large Ar, the local
wake from the cross-section of torus is very close to that of circular cylinder. As indicated by Sheard et al. [29,30], the critical
Ar at which the flow over the torus switches from a circular cylinder type of shedding to a sphere type of hairpin wake occurs
at Ar � 3:9.

In the present simulation, the torus is placed with its axis aligned with the flow direction. Two small aspect ratios are
selected: Ar = 0.5 and 2. Note that the hole in the center of torus starts to appear when Ar = 1. According to Sheard et al.
[29,30], the transition mode of torus with current two aspect ratios is similar to that of sphere. By increasing the Reynolds
number, separation transition occurs firstly and regular non-axisymmetric transition occurs secondly, followed by Hopf
transition. Here, the Reynolds number is based on the free stream velocity U1 and the cross-section diameter d. Like the
sphere case, the computational domain is a rectangular box and its size is 25d � 20d � 20d in the x-, y- and z-direction,
respectively. The torus is located at (10d,10d,10d). A non-uniform mesh, which is fine and uniform around the torus, is ta-
ken. The initial conditions and outer boundary conditions are implemented using the same way as used in the sphere case.

For Ar ¼ 0:5, as shown by Sheard et al. [29], the critical Reynolds numbers corresponding to the three transitions are
Re = 7, 123.4 and 152.4, respectively. Hence, three different Reynolds numbers are selected for the case of Ar ¼ 0:5:
Re = 50 (after separation transition), 150 (after regular non-axisymmetric transition) and 180 (after Hopf transition). To sim-
ulate the flow at these Reynolds numbers, the mesh size is chosen as 101 � 101 � 101. The uniform mesh spacing around the
torus is taken as 0.05. The surface of torus is discretized using triangular elements with 458 vertices.

Fig. 13 illustrates the streamlines at these Reynolds numbers. It is obvious that three distinct flow states can be found in
Fig. 13: steady axisymmetric flow at Re = 50, steady planar symmetric flow at Re = 150 and unsteady planar symmetric flow
at Re = 180. Actually, this flow behavior has a similarity to that of flow over a sphere as shown in Figs. 7, 9 and 10. For
Fig. 14. Vortical structures behind torus without hole.



J. Wu, C. Shu / Journal of Computational Physics 229 (2010) 5022–5042 5039
demonstration of 3D vortex, the vortical structures based on the method of Jeong and Hussain [28] are plotted in Fig. 14 for
planar symmetric flows. The two-threaded wake and hairpin vortex behind the torus, for steady and unsteady planar sym-
metric flows, respectively, are observed. The phenomenon is the same as that of sphere, which can be found in Fig. 11.

In the case of Ar ¼ 2, there is a hole in the center of torus. This means that the flow can go through the torus from its
center portion, which is vastly different from flow over a sphere and torus with Ar < 1. Therefore, the wake behind the torus
with Ar ¼ 2 would exhibit some different flow behavior. Similar to the case of Ar ¼ 0:5, three different Reynolds numbers are
also selected for the case of Ar ¼ 2: Re = 40 (after separation transition), 93 (after regular non-axisymmetric transition) and
120 (after Hopf transition). To simulate the flow at these Reynolds numbers, the mesh size is chosen as 101 � 121 � 121. The
uniform mesh spacing around the torus is taken as 0.05. The surface of torus is discretized using triangular elements with
776 vertices.

As a consequence, similar three distinct flow states also appear in Fig. 15 which displays the streamlines at three Reynolds
numbers. However, because of the existence of hole in the center of torus for Ar = 2, the interesting phenomenon occurs. For
steady axisymmetric flow in Fig. 15 (Re = 40), the recirculation region on the axis detaches from the rear part of torus, which
is unlike the case of flow over a sphere and torus without hole (as shown in Figs. 7 and 13). Due to the presence of hole, the
stagnation points of torus switch from the centerline to the cross-section surface. Hence, the new recirculation region ap-
pears behind the cross-section of torus. When the Reynolds number is increased, at the steady planar symmetric state
(Re = 93), the recirculation region behind the cross-section of torus is enlarged. At the same time, the recirculation region
on the axis is pushed further downstream and becomes smaller. Finally, for the unsteady planar symmetric flow
(Re = 120), the recirculation region on the axis disappears. Fig. 16 plots the 3D vortical structure of planar symmetric flows.
Again, k2-method of Jeong and Hussain [28] is employed. As seen clearly from Fig. 16, the familiar two-threaded wake and
hairpin vortices, which can be observed from the case of flow over a sphere and torus with Ar ¼ 0:5 (as shown in Figs. 11 and
14), do not appear.
Fig. 15. Streamlines for flow over a torus with Ar ¼ 2.



Fig. 16. Vortical structures behind torus with a hole.

Table 2
Drag coefficients of flow over torus.

Cases Drag coefficient Cd

Present Sheard et al. [31]

Ar ¼ 0:5 Re = 50 1.338 –
Re = 150 0.801 –
Re = 180 0.745 –

Ar ¼ 2 Re = 40 1.335 1.3
Re = 93 1.013 1.0
Re = 120 0.96 0.9

5040 J. Wu, C. Shu / Journal of Computational Physics 229 (2010) 5022–5042
Different from the case of sphere, as suggested by Sheard et al. [31], the drag coefficient of torus can be defined as
Cd ¼
2FD

qAfrontalU
2
1

ð51Þ
where Afrontal is the projected frontal area of torus. If the dimensions are scaled by the diameter of torus cross-section d, Afrontal

can be simplified to a function of Ar
Afrontal ¼
4

pðAr2þ2Arþ1Þ
0 6 Ar 6 1

1
pAr Ar > 1

(
ð52Þ
The obtained drag coefficients are listed in Table 2 for Ar ¼ 0:5 at Re = 50, 150, 180 and for Ar ¼ 2 at Re = 40, 93, 120,
respectively. Sheard et al. [31] gave some results at different Ar and Re. For Ar ¼ 2, their values of Cd are also included in
Table 2 for comparison. It can be seen that the present numerical results compare favorably well with those of Sheard et
al. [31].



J. Wu, C. Shu / Journal of Computational Physics 229 (2010) 5022–5042 5041
5. Conclusions

The boundary condition-enforced immersed boundary-lattice Boltzmann method (IB-LBM) proposed in [14] can accu-
rately simulate incompressible viscous flows around curved boundaries without flow penetration to the solid body. Usually,
it is applied on the structured non-uniform Cartesian mesh. In this approach, the flow field is obtained by Taylor series
expansion and least squares-based lattice Boltzmann method (TLLBM). TLLBM can be applied to any mesh point distribution
but it needs considerable memory or time to store or compute the weighting coefficients. This drawback greatly limits the
application of TLLBM and IB-LBM for simulation of three-dimensional flows. To overcome this drawback, an efficient LBM
solver, which is specifically developed for IB-LBM on the non-uniform Cartesian mesh, is proposed in this paper. The new
LBM solver is actually based on the one-dimensional interpolation along the straight mesh lines. Its weighting coefficients
can be simply calculated by algebraic formulations without solving an equation system, and the number of weighting coef-
ficients is much less than that in TLLBM. Numerical example of simulating the three-dimensional cubic cavity flow showed
that the proposed approach takes about 8% of computational time of TLLBM. The high efficiency of the approach is
demonstrated.

The computational efficiency of boundary condition-enforced IB-LBM [14] is significantly improved when TLLBM is re-
placed by the proposed LBM solver on the non-uniform Cartesian mesh. Numerical examples for simulating flows around
a sphere and torus demonstrated that the improved IB-LBM can accurately and effectively simulate the general three-dimen-
sional viscous flows with curved boundaries.

In the present work, only the flow around stationary boundaries is considered. For this case, the matrix A in Eq. (18) and
its inverse do not change with time. So, we can calculate them once and store for the following computations. It is indicated
that when the flow around a moving boundary is considered, the matrix A and its inverse will change with time. Therefore,
we have to calculate them at every time step.
Acknowledgment

This work was partially supported by the National Natural Science Foundation of China (10728206).
References

[1] H. Johansen, P. Colella, A Cartesian grid embedded boundary method for Poisson’s equation on irregular domains, J. Comput. Phys. 147 (1998) 60–85.
[2] H.S. Udaykumar, R. Mittal, P. Rampunggoon, A. Khanna, A sharp interface Cartesian grid method for simulating flows with complex moving boundaries,

J. Comput. Phys. 174 (2001) 345–380.
[3] E.A. Fadlun, R. Verzicco, P. Orlandi, J. Mohd-Yusof, Combined immersed-boundary finite-difference methods for three-dimensional complex flow

simulations, J. Comput. Phys. 161 (2000) 35–60.
[4] A. Gilmanov, F. Sotiropoulos, A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies, J.

Comput. Phys. 207 (2005) 457–492.
[5] L. Ge, F. Sotiropoulos, A numerical method for solving the 3D unsteady incompressible Navier–Stokes equations in curvilinear domains with complex

immersed boundaries, J. Comput. Phys. 225 (2007) 1782–1809.
[6] C.S. Peskin, Numerical analysis of blood flow in the heart, J. Comput. Phys. 25 (1977) 220–252.
[7] R. Mittal, G. Iaccarino, Immersed boundary methods, Annu. Rev. Fluid Mech. 37 (2005) 239–261.
[8] S. Chen, G.D. Doolen, Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech. 30 (1998) 329–364.
[9] S. Succi, The Lattice Boltzmann Equation, For Fluid Dynamics and Beyond, Oxford University Press, 2001.

[10] Z. Feng, E. Michaelides, The immersed boundary-lattice Boltzmann method for solving fluid–particles interaction problems, J. Comput. Phys. 195
(2004) 602–628.

[11] Z. Feng, E. Michaelides, Proteus: a direct forcing method in the simulations of particulate flows, J. Comput. Phys. 202 (2005) 20–51.
[12] X.D. Niu, C. Shu, Y.T. Chew, Y. Peng, A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible

viscous flows, Phys. Lett. A 354 (2006) 173–182.
[13] Y. Peng, C. Shu, Y.T. Chew, X.D. Niu, X.Y. Lu, Application of multi-block approach in the immersed boundary-lattice Boltzmann method for viscous fluid

flows, J. Comput. Phys. 218 (2006) 460–478.
[14] J. Wu, C. Shu, Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications, J. Comput. Phys. 228 (2009) 1963–

1979.
[15] X. He, G.D. Doolen, Lattice Boltzmann method on a curvilinear coordinate system: vortex shedding behind a circular cylinder, Phys. Rev. E 56 (1997)

434–440.
[16] R. Mei, W. Shyy, On the finite difference-based lattice Boltzmann method in curvilinear coordinates, J. Comput. Phys. 143 (1998) 426–448.
[17] G. Peng, H. Xi, C. Duncan, S.H. Chou, Finite volume scheme for the lattice Boltzmann method on unstructured meshes, Phys. Rev. E 59 (1999) 4675–

4682.
[18] D. Yu, R. Mei, W. Shyy, A multi-block lattice Boltzmann method for viscous fluid flows, Int. J. Numer. Meth. Fluid 39 (2002) 99–120.
[19] C. Shu, X.D. Niu, Y.T. Chew, Taylor-series expansion and least-squares-based lattice Boltzmann method: two-dimensional formulation and its

applications, Phys. Rev. E 65 (2002) 036708.
[20] X.D. Niu, Y.T. Chew, C. Shu, Simulation of flows around an impulsively started circular cylinder by Taylor series expansion- and least squares-based

lattice Boltzmann method, J. Comput. Phys. 188 (2003) 176–193.
[21] Y.H. Qian, D. d’Humieres, P. Lallemand, Lattice BGK models for Navier–Stokes equation, Europhys. Lett. 17 (1992) 479–484.
[22] C.S. Peskin, The immersed boundary method, Acta Numer. 11 (2002) 479–517.
[23] V. Babu, S.A. Korpela, Numerical solution of the incompressible three-dimensional Navier–Stokes equations, Comput. Fluid 23 (1994) 675–691.
[24] C. Shu, X.D. Niu, Y.T. Chew, Taylor series expansion and least squares-based lattice Boltzmann method: three-dimensional formulation and its

applications, Int. J. Mod. Phys. C 14 (2003) 925–944.
[25] T.A. Johnson, V.C. Patel, Flow past a sphere up to a Reynolds number of 300, J. Fluid Mech. 378 (1999) 19–70.
[26] A. Gilmanov, F. Sotiropoulos, E. Balaras, A general reconstruction algorithm for simulating flows with complex 3D immersed boundaries on Cartesian

grids, J. Comput. Phys. 191 (2003) 660–669.
[27] F.M. White, Viscous Fluid Flow, McGraw-Hill, New York, 1974.



5042 J. Wu, C. Shu / Journal of Computational Physics 229 (2010) 5022–5042
[28] J. Jeong, J. Hussain, On the identification of a vortex, J. Fluid Mech. 285 (1995) 69–94.
[29] G.J. Sheard, M.C. Thompson, K. hourigan, From spheres to circular cylinders: the stability and flow structures of bluff ring wakes, J. Fluid Mech. 492

(2003) 147–180.
[30] G.J. Sheard, M.C. Thompson, K. Hourigan, From spheres to circular cylinders: non-axisymmetric transitions in the flow past rings, J. Fluid Mech. 506

(2004) 45–78.
[31] G.J. Sheard, K. Hourigan, M.C. Thompson, Computations of the drag coefficients for low-Reynolds-number flow past rings, J. Fluid Mech. 526 (2005)

257–275.


	An improved immersed boundary-lattice Boltzmann method for simulating three-dimensional incompressible flows
	Introduction
	Boundary condition-enforced immersed boundary-lattice Boltzmann method (IB-LBM)
	An efficient LBM solver on non-uniform Cartesian mesh
	Brief description of TLLBM
	Efficient LBM solver on non-uniform Cartesian mesh
	Accuracy analysis of present LBM

	Numerical results and discussion
	Flow in 3D lid-driven cavity
	Flow over a stationary sphere
	Flow over a small aspect ratio torus

	Conclusions
	Acknowledgment
	References


